37 research outputs found

    Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI

    Get PDF
    The structural integrity of the corticospinal tract (CST) after stroke is closely linked to the degree of motor impairment. Simple and reliable methods of assessing white matter integrity within the CST would facilitate the use of this measure in routine clinical practice. Commonly, diffusion tensor imaging is used to measure voxel-wise fractional anisotropy (FA) in a variety of regions of interest (ROIs) representing the CST. Several methods are currently in use with no consensus about which approach is best. ROIs are usually either the whole CST or the posterior limb of the internal capsule (PLIC). These are created manually on brain images or with reference to an individual's CST determined by tractography. Once the ROI has been defined, the FA can be reported as an absolute measure from the ipsilesional side or as a ratio in comparison to the contralesional side. Both corticospinal tracking and manual ROI definition in individual stroke patients are time consuming and subject to bias. Here, we investigated whether using a CST template derived from healthy volunteers was a feasible method for defining the appropriate ROI within which to measure changes in FA. We reconstructed the CST connecting the primary motor cortex to the ipsilateral pons in 23 age-matched control subjects and 21 stroke patients. An average healthy CST template was created from the 23 control subjects. For each patient, FA values were then calculated for both the template CST and for their own CST. We compared patients' FA metrics between the two tracts by considering four measures (FA in the ipsilesional side, FA in the contralesional side, FA ratio of the ipsilesional side to the contralesional side and FA asymmetry between the two sides) and in two tract-based ROIs (whole tract and tract section traversing the PLIC). There were no significant differences in FA metrics for either method, except for contralesional FA. Furthermore, we found that FA metrics relating to CST damage all correlated with motor ability post-stroke equally well. These results suggest that the healthy CST template could be a surrogate structure for defining tract-based ROIs with which to measure stroke patients' FA metrics, avoiding the necessity for CST tracking in individual patients. CST template-based automated quantification of structural integrity would greatly facilitate implementation of practical clinical applications of diffusion tensor imaging

    Changes in the location of cortico-muscular coherence following stroke

    Get PDF
    Stroke results in reorganization of residual brain networks. The functional role of brain regions within these networks remains unclear, particularly those in the contralesional hemisphere. We studied 25 stroke patients with a range of motor impairment and 23 healthy age-matched controls using magnetoencephalography (MEG) and electromyography (EMG) to measure oscillatory signals from the brain and affected muscles simultaneously during a simple isometric hand grip, from which cortico-muscular coherence (CMC) was calculated. Peaks of cortico-muscular coherence in both the beta and gamma bands were found in the contralateral sensorimotor cortex in all healthy controls, but were more widespread in stroke patients, including some peaks found in the contralesional hemisphere (7 patients for beta coherence and 5 for gamma coherence). Neither the coherence value nor the distance of the coherence peak from the mean of controls correlated with impairment. Peak CMC in the contralesional hemisphere was found not only in some highly impaired patients, but also in some patients with good functional recovery. Our results provide evidence that a wide range of cortical brain regions, including some in the contralesional hemisphere, may have influence over EMG activity in the affected muscles after stroke thereby supporting functional recovery

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions

    La Relación Entre la Motivación Docente y Variables de la Organización: Revisión de la Literatura

    Get PDF
    Abstract Teacher motivation plays a central role in education because ofitsimpacton student motivation. Previous reviews of teacher motivation have focused on individual variables and psychopathology indicators. However, it is also important to understand the effect of organizational variableson teacher motivationbecause these highlightthe contextthat the teacher is a part of(i.e.,the school). The literature review in this paper analysed studies related to teacher motivation and a pre-defined group of organizational variablesthat werepublished between 1990 and 2014 in several electronic databases.The study found that organizational culture was the most studied variable associated with teacher motivationand most studies in this area were published between 2010 and 2014.Further,there was a prevalence of quantitative studies. This paper concludes with the theoreticaland practical implications of the results,as well assuggestions for future research directions

    Predictions not commands: active inference in the motor system

    Full text link
    corecore